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One objective of the Virtual Institute for Microbial Stress and Survival (VIMSS) 
and the Environmental Stress Pathway Project (ESPP) is to determine the genetic and 
physiological bases for cooperative and competitive interactions among environmental 
microbial populations of relevance to the DOE.  The ESPP Applied Environmental Core 
(AEC) and Functional Genomics Core (FGC) have identified a number of genes that may 
participate in cooperative interactions between sulfate reducers and methanogens under 
low sulfate conditions.

The Deltaproteobacterium D. vulgaris is able to grow in the absence of an electron 
acceptor via syntrophy with hydrogenotrophic organisms.  Despite decades of research, 
energy conservation in D. vulgaris is not well understood.  The presence of multiple 
hydrogenases, including many located in the periplasm in all studied Desulfovibrio
strains - and the observation that hydrogen is produced and then consumed during growth 
with lactate and sulfate (Tsuji&Yagi, 1980) - lead to the formulation of the hydrogen 
cycling hypothesis as a mechanism for energy conservation (Odom & Peck, 1981).  The 
completed genome sequence of D. vulgaris Hildenborough has since revealed genes for 
at least six different hydrogenases: four periplasmic and two cytoplasmic.  Although 
several have been partially characterized biochemically and genetically, their roles in D. 
vulgaris under different growth conditions remain mostly undefined.  

One of the membrane-bound hydrogenases, Ech, is very similar to a proton 
pumping hydrogenase from Pyrococcus furiosus DSM 3638 (Sapra et. al., 2004) and
Thermoanaerobacter tengcongensis (Soboh et.al., 2004). It was suggested that a role for 
the Ech of DvH is hydrogen production using ferredoxin as a redox partner (Pohorelic et 
al., 2002; Rodrigues et al., 2003). 

In this work we examined the growth and metabolite production of an echA
(DVU0434) D. vulgaris Hildenborough mutant under three different growth conditions: 
i) in medium amended with lactate and sulfate and ii) in medium amended with acetate, 
hydrogen and sulfate, and iii) in coculture with the hydrogenotrophic methanogen
Methanococcus maripaludis, lacking an electron acceptor. 

In a medium containing acetate and an atmosphere of H2/CO2, growth of the mutant was 
severely impaired relative to the wild type (Figure 2C). Thus, the available data suggest that the 
primary role of the Ech hydrogenase is oxidation of hydrogen during sulfate respiration, possibly also 
contributing to the production of reduced ferredoxin required for conversion of Acetyl CoA to 
pyruvate by pyruvate oxidoreductase, as was previously demonstrated for the homologous 
hydrogenases in M. barkeri and M. maripaludis (Meuer et al., 2002; Porat et al., 2006). The 
hypothetical mechanism of hydrogen oxidation under this growth condition are shown on  Figure 6.
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echABCDEF operon in wild type D. vulgaris

On lactate, the mutant demonstrated a growth rate and yield comparable to the wild type 
strain, but evolved more hydrogen as measured by its accumulation in the headspace during growth 
in batch culture (Figure 2A and B). A coculture consisting of the mutant strain and a 
hydrogenotrophic methanogen (M. maripaludis) demonstrated only slightly reduced growth rate and 
increased hydrogen accumulation in stationary phase when lactate was consumed relative to the wild 
type (Figure 4).  This suggested a minor role of Ech in energy conservation during syntrophic 
growth. The hypothetical mechanism of hydrogen oxidation under these two growth conditions are 
shown on  Figure 5. 
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D. vulgaris was grown on a B3o medium in 25 ml Balch tubes at 30 psi with either a 80%N2: 
20%CO2 or 80%H2:20% CO2 gas mixture in the headspace volume of approximately 15 ml.  The basal 
B3o medium (pH 7.2) contained (per liter):  0.25g NaCl, 5.5 g  MgCl2•6H20, 0.1g CaCl2•2H20, 0.5g 
NH4Cl, 0.1g KCl, 1.4g Na2SO4, 25mM  NaHCO3, 5.75mM  K2HPO4, 0.001g resazurine, 0.078g Na2S ·
9 H2O, 1ml Thauer’s vitamins of (containing per liter 0.02g biotin, 0.02g folic acid, 0.1g pyridoxine 
HCl, 0.05g thiamine HCl, 0.05g riboflavin, 0.05g nicotinic acid, 0.05g DL pantothenic acid, 0.05g p-
aminobenzoic acid, 0.01g vitamin B12), 1ml of trace minerals (per liter: 1.0g FeCl2•4H2O, 0.5g 
MnCl2•4H2O, 0.3g CoCl2•4H2O, 0.2g ZnCl2, 0.05g Na2MoO4•4H2O, 0.02g H3BO3 , 0.1g NiSO4•6H2O, 
0.002g CuCl2•2H2O, 0.006g Na2SeO3•5H2O, 0.008g Na2WO4•2H2O).  This basal medium was 
amended with lactate and sulfate for growth in mono-culture or co-culture.

The concentration of organic acids and inorganic ions (sulfate, phosphate) in culture fluids were 
determined using a Dionex 500 system equipped with an AS11HC column.  In some cases the 
concentration of organic acids was also measured on an HPLC equipped with a HPX 78 (Bio-Rad) 
column.  Hydrogen concentrations were determined with a RGD2 Reduction Gas Detector (Trace 
Analytical) with 60/80 MOLE SIEVE 5A column (6’ X 1/8’’) with N2 as carrier gas.  The 
concentration of methane and carbon dioxide was measured on a GC equipped with a TCD and "80/100 
HAYESEP Q" column (6’ X 1/8’’) with helium as carrier gas. 

The echA was deleted, generating the mutant JW380. 
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Growth of D. vulgaris on Hydrogen and Sulfate
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X – unknown cytoplasmic hydrogenase; POR – pyruvate oxidoreductase; 
APT – acetyl phosphotransferase; ACK – acetate kinase

Hase – periplasmic hydrogenase(s)
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